声明:本站书库内容主要引用自 archive.org,kanripo.org, db.itkc.or.kr 和 zh.wikisource.org
御制数理精蕴 下编卷十一 第 1a 页 WYG0799-0712a.png

御制数理精蕴下编卷十一
面部一
平方
带纵平方
御制数理精蕴 下编卷十一 第 2a 页 WYG0799-0712c.png

平方者等边四直角之面积也以形而言则为两矩
所合以积而言则为自乘之数因其有广无厚故曰
平方因其纵横相等故曰正方盖方积面也而其边
则线也有线求面则相乘而得积有面求线则开方
而得边开之之法略与归除同但归除有法有实而
开方则有实而无法故古人立为商除廉隅之制以
相求每积二位得边之一位所谓一百一十定无疑
御制数理精蕴 下编卷十一 第 2b 页 WYG0799-0712d.png WYG0799-0713a.png


推是也其法先从一角而剖其幂以自一至九自乘
之数为方根与所有之积相审量其足减者而定之
是为初商初商减尽无馀则方边止一位若有馀实
即初商方积外别成一磬折形其附初商之两旁者
谓之廉两廉之角所合一小方谓之隅廉有二故倍
初商为两廉之共长是为廉法视馀积足廉法几倍
即是次商隅即次商之自乘故次商为隅法合廉隅
而以次商乘之则得两廉一隅之共积所谓初商方
御制数理精蕴 下编卷十一 第 2b 页 WYG0799-0712d.png WYG0799-0713a.png


御制数理精蕴 下编卷十一 第 3a 页 WYG0799-0713c.png

则又成一磬折形而仍为两廉一隅但较前廉愈长
而隅愈小耳凡有几层廉隅俱照初商之例逐层递
析之实尽而止实不尽者必非自乘之正数递析之
至于纤尘终有奇零若馀实不足廉隅法之数者则
方边为空位此开方之定法也面形不一而容积皆
以方积为准故平方为算诸面之本诸面必通之方
积而后可施其法也
御制数理精蕴 下编卷十一 第 3b 页 WYG0799-0713d.png WYG0799-0714a.png


法列方积三十六尺自末位起算每方
积二位定方边一位今积止有二位则
于六尺上作记定单位以自一至九自
乘之方根数与之相审知与六尺自乘
之数恰合乃以六尺书于方积六尺之
上而以六尺自乘之三十六尺书于方
积原数之下相减恰尽即得开方之数
为六尺也如图甲乙丙丁正方形每边
御制数理精蕴 下编卷十一 第 3b 页 WYG0799-0713d.png WYG0799-0714a.png


御制数理精蕴 下编卷十一 第 4a 页 WYG0799-0714c.png

与六尺自乘方根之数相准故商除之
恰尽也盖方积为二位是以方边止一
位方积即六尺自乘之数故无廉隅之
可用次商如有馀积则自成廉隅而用
次商矣
设如正方面积一丈四十四尺开方问每一边数几
何
御制数理精蕴 下编卷十一 第 4b 页 WYG0799-0714d.png WYG0799-0715a.png


每方积二位定方边一位故隔一位作
记即于四尺上定尺位一丈上定丈位
其一丈为初商积与一丈自乘之数相
合即定初商为一丈书于方积一丈之
上而以一丈自乘之正方一丈书于初
商积之下相减恰尽爰以方边末位积
四十四尺续书于下(大凡以馀积续书/于下者每取方积)
(之二位以当方/边之一位也)为次商廉隅之共积乃
御制数理精蕴 下编卷十一 第 4b 页 WYG0799-0714d.png WYG0799-0715a.png


御制数理精蕴 下编卷十一 第 5a 页 WYG0799-0715c.png

次商为二尺书于方积四尺之上而以
次商二尺为隅法与廉法二十尺相加
共得二十二尺为廉隅共法书于馀积
之左以次商二尺乘之得四十四尺与
次商廉隅共积相减恰尽是开得一丈
二尺为方面每一边之数也如图甲乙
丙丁正方形每边皆一丈二尺其中函
御制数理精蕴 下编卷十一 第 5b 页 WYG0799-0715d.png WYG0799-0716a.png


所分甲庚己戊正方形每边一丈即初
商数其中函正方积一丈即初商自乘
数所馀庚己壬乙戊己辛丁两长方为
两廉其各长十尺即初商数其各阔二
尺即次商数廉有二故倍初商为廉法
其己壬丙辛一小正方为隅其边二尺
亦即次商数故以次商为隅法合两廉
一隅成一磬折形附于初商自乘方之
御制数理精蕴 下编卷十一 第 5b 页 WYG0799-0715d.png WYG0799-0716a.png


御制数理精蕴 下编卷十一 第 6a 页 WYG0799-0716c.png

设如正方面积五百二十九尺开方问每一边数几
何(此题正方面积之三位皆以尺命位似与前题/分丈尺者不同然其取方积二位续书于下其)
(末位即命为单位立/算则与丈尺同也)
法列方积五百二十九尺自末位起算
每方积二位定方边一位故隔一位作
记乃于九尺上定单位五百尺上定十
位其五百尺为初商积以初商本位计
御制数理精蕴 下编卷十一 第 6b 页 WYG0799-0716d.png WYG0799-0717a.png


自乘之数相准即定初商为二书于方
积五百尺之上而以二自乘之四书于
初商积之下相减馀一百尺爰以方边
第二位积二十九尺续书于下共一百
二十九尺为次商廉隅之共积乃以初
商之二作二十尺倍之得四十尺为廉
法以除一百二十九尺足三尺即定次
商为三尺书于方积九尺之上而以次
御制数理精蕴 下编卷十一 第 6b 页 WYG0799-0716d.png WYG0799-0717a.png


御制数理精蕴 下编卷十一 第 7a 页 WYG0799-0717c.png

左以次商三尺乘之得一百二十九尺
与次商廉隅共积相减恰尽是开得二
十三尺为方面每一边之数也如图甲
乙丙丁正方形每边皆二十三尺其中
函积五百二十九尺是为共积其从一
角所分甲庚己戊正方形每边二十尺
即初商数其中函积四百尺即初商自
御制数理精蕴 下编卷十一 第 7b 页 WYG0799-0717d.png WYG0799-0718a.png


为两廉其各长二十尺即初商数其各
阔三尺即次商数其己壬丙辛一小正
方为隅其边三尺亦即次商数合两廉
一隅成一磬折形附于初商自乘方之
两边而成一总正方形也
设如正方面积五丈四十七尺五十六寸开方问每
一边数几何
法列方积五丈四十七尺五十六寸自
御制数理精蕴 下编卷十一 第 7b 页 WYG0799-0717d.png WYG0799-0718a.png


御制数理精蕴 下编卷十一 第 8a 页 WYG0799-0718c.png

上定尺位五丈上定丈位其五丈为初
商积与二丈自乘之数相准即定初商
为二丈书于方积五丈之上而以二丈
自乘之四丈书于初商积之下相减馀
一丈即一百尺爰以方边第二位积四
十七尺续书于下共一百四十七尺为
次商廉隅之共积乃以初商之二丈作
御制数理精蕴 下编卷十一 第 8b 页 WYG0799-0718d.png WYG0799-0719a.png


百四十七尺足三尺即定次商为三尺
书于方积七尺之上而以次商三尺为
隅法与廉法四十尺相加共得四十三
尺为廉隅共法书于馀积之左以次商
三尺乘之得一百二十九尺与次商廉
隅共积相减馀一十八尺即一千八百
寸复以方边末位积五十六寸续书于
下共一千八百五十六寸为三商廉隅
御制数理精蕴 下编卷十一 第 8b 页 WYG0799-0718d.png WYG0799-0719a.png


御制数理精蕴 下编卷十一 第 9a 页 WYG0799-0719c.png

法以除一千八百五十六寸足四寸即
定三商为四寸书于方积六寸之上而
以三商四寸为隅法与廉法四百六十
寸相加共得四百六十四寸为廉隅共
法书于馀积之左以三商四寸乘之得
一千八百五十六寸与三商廉隅共积
相减恰尽是开得二丈三尺四寸为方
御制数理精蕴 下编卷十一 第 9b 页 WYG0799-0719d.png WYG0799-0720a.png


设如正方面积四十五万九千六百八十四尺开方
问每一边数几何(此题正方面积之六位皆以尺/命位似与前题分丈尺寸三色)
(者不同然其每取方积二位续书于下其/末位即命为单位立算仍与丈尺寸同也)
法列方积四十五万九千六百八十四
尺自末位起算每方积二位定方边一
位故隔一位作记乃于四尺上定单位
六百尺上定十位五万尺上定百位其
四十五万尺为初商积以初商本位计
御制数理精蕴 下编卷十一 第 9b 页 WYG0799-0719d.png WYG0799-0720a.png


御制数理精蕴 下编卷十一 第 10a 页 WYG0799-0720c.png

即定初商为六书于方积五万尺之上
而以六自乘之三十六书于初商积之
下相减馀九万尺爰以方边第二位积
九千六百尺续书于下共九万九千六
百尺为次商廉隅之共积以次商本位
计之则六百尺为次商积之单位而九
万九千六百尺为九百九十六而初商
御制数理精蕴 下编卷十一 第 10b 页 WYG0799-0720d.png WYG0799-0721a.png


倍之得一百二十为廉法以除九百九
十六足七倍即定次商为七书于方积
六百尺之上而以次商七为隅法与廉
法一百二十相加共得一百二十七为
廉隅共法书于馀积之左以次商七乘
之得八百八十九与次商廉隅共积相
减馀一万零七百尺复以方边末位积
八十四尺续书于下共一万零七百八
御制数理精蕴 下编卷十一 第 10b 页 WYG0799-0720d.png WYG0799-0721a.png


御制数理精蕴 下编卷十一 第 11a 页 WYG0799-0721c.png

商次商之六百七十倍之得一千三百
四十为廉法以除一万零七百八十四
足八倍即定三商为八书于方积四尺
之上而以三商八为隅法与廉法一千
三百四十相加共得一千三百四十八
为廉隅共法书于馀积之左以三商八
乘之得一万零七百八十四与三商廉
御制数理精蕴 下编卷十一 第 11b 页 WYG0799-0721d.png WYG0799-0722a.png


尺为方面每一边之数也
设如正方面积三十五丈九十一尺六十寸四十九
分开方问每一边数几何
法列方积三十五丈九十一尺六十寸
四十九分自末位起算每隔一位作记
即于九分上定分位空寸上定寸位一
尺上定尺位五丈上定丈位其三十五
丈为初商积与五丈自乘之数相准即
御制数理精蕴 下编卷十一 第 11b 页 WYG0799-0721d.png WYG0799-0722a.png


御制数理精蕴 下编卷十一 第 12a 页 WYG0799-0723a.png

之下相减馀一十丈即一千尺爰以方
边第二位积九十一尺续书于下共一
千零九十一尺为次商廉隅之共积乃
以初商五丈作五十尺倍之得一百尺
为廉法以除一千零九十一尺足九尺
即定次商为九尺书于方积一丈之上
而以次商九尺为隅法与廉法一百尺
御制数理精蕴 下编卷十一 第 12b 页 WYG0799-0723b.png WYG0799-0723c.png


于馀积之左以次商九尺乘之得九百
八十一尺与次商廉隅共积相减馀一
百一十尺即一万一千寸复以方边第
三位积六十寸续书于下共一万一千
零六十寸为三商廉隅之共积乃以初
商次商之五丈九尺作五百九十寸倍
之得一千一百八十寸为廉法以除一
万一千零六十寸足九寸即定三商为
御制数理精蕴 下编卷十一 第 12b 页 WYG0799-0723b.png WYG0799-0723c.png


御制数理精蕴 下编卷十一 第 13a 页 WYG0799-0724a.png

加共得一千一百八十九寸为廉隅共
法书于馀积之左以三商九寸乘之得
一万零七百零一寸与三商廉隅共积
相减馀三百五十九寸即三万五千九
百分复以方边末位积四十九分续书
于下共三万五千九百四十九分为四
商廉隅之共积乃以初商次商三商之
御制数理精蕴 下编卷十一 第 13b 页 WYG0799-0724b.png WYG0799-0724c.png


之得一万一千九百八十分为廉法以
除三万五千九百四十九分足三分即
定四商为三分书于方积九分之上而
以四商三分为隅法与廉法一万一千
九百八十分相加共得一万一千九百
八十三分为廉隅共法书于馀积之左
以四商三分乘之得三万五千九百四
十九分与四商廉隅共积相减恰尽是
御制数理精蕴 下编卷十一 第 13b 页 WYG0799-0724b.png WYG0799-0724c.png


御制数理精蕴 下编卷十一 第 14a 页 WYG0799-0725a.png

设如正方面积五百八十五万六千四百尺开方问
每一边数几何
法列方积五百八十五万六千四百尺
补二空位以足其分自末空位起算每
隔一位作记于空尺上定单位四百尺
上定十位五万尺上定百位五百万尺
上定千位其五百万尺为初商积以初
御制数理精蕴 下编卷十一 第 14b 页 WYG0799-0725b.png WYG0799-0725c.png


单位止与二自乘之数相准即定初商
为二书于方积五百万尺之上而以二
自乘之四书于初商积之下相减馀一
百万尺爰以方边第二位积八十五万
尺续书于下共一百八十五万尺为次
商廉隅之共积以次商本位计之则五
万尺为次商积之单位而一百八十五
万尺为一百八十五而初商之二即为
御制数理精蕴 下编卷十一 第 14b 页 WYG0799-0725b.png WYG0799-0725c.png


御制数理精蕴 下编卷十一 第 15a 页 WYG0799-0726a.png

定次商为四书于方积五万尺之上而
以次商四为隅法与廉法四十相加共
得四十四为廉隅共法书于馀积之左
以次商四乘之得一百七十六与次商
廉隅共积相减馀九万尺复以方边第
三位积六千四百尺续书于下共九万
六千四百尺为三商廉隅之共积以三
御制数理精蕴 下编卷十一 第 15b 页 WYG0799-0726b.png WYG0799-0726c.png


而九万六千四百尺为九百六十四而
初商之二即为二百次商之四即为四
十故以初商次商之二四作二百四十
倍之得四百八十为廉法以除九百六
十四足二倍即定三商为二书于方积
四百尺之上而以三商二为隅法与廉
法四百八十相加共得四百八十二为
廉隅共法书于馀积之左以三商二乘
御制数理精蕴 下编卷十一 第 15b 页 WYG0799-0726b.png WYG0799-0726c.png


御制数理精蕴 下编卷十一 第 16a 页 WYG0799-0727a.png

面每一边之数也此法方积之末有二
空位故所得方边之末亦补一空位凡
设数未至单位者皆依此例补足位分
然后开之
设如正方面积八十二丈六十二尺八十一寸开方
问每一边数几何
法列方积八十二丈六十二尺八十一
御制数理精蕴 下编卷十一 第 16b 页 WYG0799-0727b.png WYG0799-0727c.png


上定寸位于二尺上定尺位于二丈上
定丈位其八十二丈为初商积与九丈
自乘之数相准即定初商为九丈书于
方积二丈之上而以九丈自乘之八十
一丈书于方积八十二丈之下相减馀
一丈即一百尺爰以方边第二位积六
十二尺续书于下共一百六十二尺为
次商廉隅之共积乃以初商九丈作九
御制数理精蕴 下编卷十一 第 16b 页 WYG0799-0727b.png WYG0799-0727c.png


御制数理精蕴 下编卷十一 第 17a 页 WYG0799-0728a.png

位也乃书一空于方积二尺之上以存
次商之位复以方边末位积八十一寸
续书于下共一百六十二尺八十一寸
即一万六千二百八十一寸为三商廉
隅之共积仍以一百八十尺作一千八
百寸为廉法以除一万六千二百八十
一寸足九寸即定三商为九寸书于方
御制数理精蕴 下编卷十一 第 17b 页 WYG0799-0728b.png WYG0799-0728c.png


廉法一千八百寸相加共得一千八百
零九寸为廉隅共法书于馀积之左而
以三商九寸乘之得一万六千二百八
十一寸与三商廉隅共积相减恰尽是
开得九丈零九寸为方面每一边之数
也此法方积无空位而商出之方边有
空位凡廉法除馀积而数不足者皆依
此例推之
御制数理精蕴 下编卷十一 第 17b 页 WYG0799-0728b.png WYG0799-0728c.png


御制数理精蕴 下编卷十一 第 18a 页 WYG0799-0729a.png

法列方积六千四百一十一万二千零
四十九尺自末位起算每隔一位作记
于九尺上定单位空百尺上定十位一
万尺上定百位四百万尺上定千位其
六千四百万尺为初商积以初商本位
计之则四百万为初商积之单位而六
千四百万为六千四与八自乘之数相
御制数理精蕴 下编卷十一 第 18b 页 WYG0799-0729b.png WYG0799-0729c.png


之上而以八自乘之六十四书于初商
积之下相减无馀爰以方边第二位积
一十一万尺续书于下为次商廉隅之
共积以次商本位计之则一万尺为次
商积之单位而一十一万尺为一十一
而初商之八即为八十故以初商之八
作八十倍之得一百六十为廉法以除
一十一其数不足是次商为空位乃书
御制数理精蕴 下编卷十一 第 18b 页 WYG0799-0729b.png WYG0799-0729c.png


御制数理精蕴 下编卷十一 第 19a 页 WYG0799-0730a.png

下共一十一万二千尺为三商廉隅之
共积以三商本位计之则空百尺为三
商积之单位而一十一万二千尺为一
千一百二十尺而初商之八即为八百
次商之空即为空十故以初商次商之
八空作八百倍之得一千六百为廉法
以除一千一百二十其数仍不足是三
御制数理精蕴 下编卷十一 第 19b 页 WYG0799-0730b.png WYG0799-0730c.png


尺之上以存三商之位复以方边末位
积四十九尺续书于下共一十一万二
千零四十九尺为四商廉隅之共积以
四商本位计之则积与边皆仍为本位
乃以初商次商三商之八千倍之得一
万六千为廉法以除一十一万二千零
四十九足七倍即定四商为七书于方
积九尺之上而以四商七为隅法与廉
御制数理精蕴 下编卷十一 第 19b 页 WYG0799-0730b.png WYG0799-0730c.png


御制数理精蕴 下编卷十一 第 20a 页 WYG0799-0731a.png

七乘之得一十一万二千零四十九与
馀积相减恰尽是开得八千零七尺为
方面每一边之数也此法方积中虽有
一空位而商出之方边却有二空位凡
开方遇此类者皆依此例推之
设如有积一万四千九百二十八尺开方问每一边
数几何
御制数理精蕴 下编卷十一 第 20b 页 WYG0799-0731b.png WYG0799-0731c.png


位起算每隔一位作记于八尺上定单
位九百尺上定十位一万尺上定百位
其一万尺为初商积以初商本位计之
则一万尺为初商积之单位止与一自
乘之数相合即定初商为一书于方积
一万尺之上而以一自乘之一书于初
商积之下相减无馀爰以方边第二位
积四千九百尺续书于下为次商廉隅
御制数理精蕴 下编卷十一 第 20b 页 WYG0799-0731b.png WYG0799-0731c.png


御制数理精蕴 下编卷十一 第 21a 页 WYG0799-0732a.png

九而初商之一即为一十故以初商之
一作一十倍之得二十为廉法以除四
十九足二倍即定次商为二书于方积
九百尺之上而以次商二为隅法与廉
法二十相加共得二十二为廉隅共法
书于馀积之左以次商二乘之得四十
四与次商廉隅共积相减馀五百尺复
御制数理精蕴 下编卷十一 第 21b 页 WYG0799-0732b.png WYG0799-0732c.png


五百二十八尺为三商廉隅之共积以
三商本位计之则积与边皆仍为本位
乃以初商次商之一百二十俱倍之得
二百四十为廉法以除五百二十八足
二倍即定三商为二书于方积八尺之
上而以三商二为隅法与廉法二百四
十相加共得二百四十二为廉隅共法
书于馀积之左以三商二乘之得四百
御制数理精蕴 下编卷十一 第 21b 页 WYG0799-0732b.png WYG0799-0732c.png


御制数理精蕴 下编卷十一 第 22a 页 WYG0799-0733a.png

面每一边之数仍馀四十四尺不尽也
如欲以馀数再开则得方边之寸数乃
增书两空于总积之后复续书两空于
四十四尺之后为几十几寸之位是则
四十四尺作四千四百寸为四商廉隅
之共积爰以初商次商三商之一百二
十二尺作一千二百二十寸倍之得二
御制数理精蕴 下编卷十一 第 22b 页 WYG0799-0733b.png WYG0799-0733c.png


寸足一倍即定四商为一寸书于馀积
空寸之上而以四商一为隅法与廉法
二千四百四十寸相加共得二千四百
四十一寸为廉隅共法书于馀积之左
以四商一寸乘之仍得二千四百四十
一寸与馀积相减馀一千九百五十九
寸不尽如再以馀数开之则得方边之
分数乃又续书两空于后增空十空寸
御制数理精蕴 下编卷十一 第 22b 页 WYG0799-0733b.png WYG0799-0733c.png


御制数理精蕴 下编卷十一 第 23a 页 WYG0799-0734a.png

寸作一十九万五千九百分为五商廉
隅之共积爰以初商次商三商四商之
一百二十二尺一寸作一万二千二百
一十分倍之得二万四千四百二十分
为廉法以除一十九万五千九百分足
八倍即定五商为八分书于馀积空分
之上而以五商八为隅法与廉法二万
御制数理精蕴 下编卷十一 第 23b 页 WYG0799-0734b.png WYG0799-0734c.png


四百二十八分为廉隅共法书于馀积
之左以五商八分乘之得一十九万五
千四百二十四分与馀积相减仍馀四
百七十六分不尽是开得一百二十二
尺一寸八分为方面每一边之数也此
法原积本非自乘所得之数虽递析之
终不能尽凡开方遇此类者皆依此例
推之
御制数理精蕴 下编卷十一 第 23b 页 WYG0799-0734b.png WYG0799-0734c.png


御制数理精蕴 下编卷十一 第 24a 页 WYG0799-0735a.png

法列方砖四千零九十六块为方积于
六块上定单位空百块上定十位其四
千块为初商积以初商本位计之则空
百块为初商积之单位而四千块为四
十与六自乘之数相准即定初商为六
书于方积空百块之上而以六自乘之
三十六书于初商积之下相减馀四百
御制数理精蕴 下编卷十一 第 24b 页 WYG0799-0735b.png WYG0799-0735c.png


百九十六块为次商廉隅之共积而以
初商六作六十倍之得一百二十为廉
法以除四百九十六足四倍即定次商
为四书于方积六块之上而以次商四
为隅法与廉法一百二十相加共得一
百二十四为廉隅共法书于馀积之左
以次商四乘之得四百九十六与馀积
相减恰尽是开得六十四块为方台上
御制数理精蕴 下编卷十一 第 24b 页 WYG0799-0735b.png WYG0799-0735c.png


御制数理精蕴 下编卷十一 第 25a 页 WYG0799-0736a.png

与共船数相等问共船几何
法列三百六十一人为方积于一人上
定单位三百人上定十位其三百人为
初商积以初商本位计之则三百为初
商积之单位止与一自乘之数相准即
定初商为一书于方积三百之上而以
一自乘之一书于初商积之下相减馀
御制数理精蕴 下编卷十一 第 25b 页 WYG0799-0736b.png WYG0799-0736c.png


百六十一为次商廉隅之共积而以初
商一作一十倍之得二十为廉法以除
二百六十一足九倍即定次商为九书
于方积一人之上而以次商九为隅法
与廉法二十相加共得二十九为廉隅
共法书于馀积之左以次商九乘之得
二百六十一与馀积相减恰尽是开得
十九为共船数而每船载十九人也
御制数理精蕴 下编卷十一 第 25b 页 WYG0799-0736b.png WYG0799-0736c.png


御制数理精蕴 下编卷十一 第 26a 页 WYG0799-0737a.png

法列七百八十四两为方积于四两上
定单位七百两上定十位其七百两为
初商积以初商本位计之则七百为初
商积之单位止与二自乘之数相准即
定初商为二书于方积七百之上而以
二自乘之四书于初商积之下相减馀
三百爰以馀积八十四续书于下共三
御制数理精蕴 下编卷十一 第 26b 页 WYG0799-0737b.png WYG0799-0737c.png


商二作二十倍之得四十为廉法以除
三百八十四足八倍即定次商为八书
于方积四两之上而以次商八为隅法
与廉法四十相加共得四十八为廉隅
共法书于馀积之左以次商八乘之得
三百八十四与馀积相减恰尽是开得
二十八为共人数而每人得银二十八
两也
御制数理精蕴 下编卷十一 第 26b 页 WYG0799-0737b.png WYG0799-0737c.png


御制数理精蕴 下编卷十一 第 27a 页 WYG0799-0738a.png

一石问共船几何
法列米六千五百六十一石为方积于
一石上定单位五百石上定十位其六
千五百石为初商积以初商本位计之
则五百石为初商积之单位而六千五
百为六十五与八自乘之数相准即定
初商为八书于方积五百之上而以八
御制数理精蕴 下编卷十一 第 27b 页 WYG0799-0738b.png WYG0799-0738c.png


馀一百爰以馀积六十一续书于下共
一百六十一为次商廉隅之共积而以
初商八作八十倍之得一百六十为廉
法以除一百六十一足一倍即定次商
为一书于方积一石之上而以次商一
为隅法与廉法一百六十相加共得一
百六十一为廉隅共法书于馀积之左
以次商一乘之仍得一百六十一与馀
御制数理精蕴 下编卷十一 第 27b 页 WYG0799-0738b.png WYG0799-0738c.png


御制数理精蕴 下编卷十一 第 28a 页 WYG0799-0739a.png

船所载之米分与各船每船各领一石
即共去八十石故本船尚馀一石也
设如有钱一万五千六百二十五文买瓜每瓜一个
与脚钱一文因无现钱将一瓜准作脚钱问瓜数
几何
法列钱一万五千六百二十五为方积
于五文上定单位六百上定十位一万
御制数理精蕴 下编卷十一 第 28b 页 WYG0799-0739b.png WYG0799-0739c.png


位计之则一万为初商积之单位止与
一自乘之数相合即定初商为一书于
方积一万之上而以一自乘之一书于
初商积之下相减无馀爰以第二位积
五千六百续书于下为次商廉隅之共
积以次商本位计之则六百为次商积
之单位而五千六百为五十六而初商
之一即为一十故以初商之一作一十
御制数理精蕴 下编卷十一 第 28b 页 WYG0799-0739b.png WYG0799-0739c.png


御制数理精蕴 下编卷十一 第 29a 页 WYG0799-0740a.png

而以次商二为隅法与廉法二十相加
共得二十二为廉隅共法书于馀积之
左以次商二乘之得四十四与次商廉
隅共积相减馀一千二百复以末位积
二十五续书于下共一千二百二十五
为三商廉隅之共积以三商本位计之
则积与边皆仍为本位乃以初商次商
御制数理精蕴 下编卷十一 第 29b 页 WYG0799-0740b.png WYG0799-0740c.png


法以除一千二百二十五足五倍即定
三商为五书于方积五文之上而以三
商五为隅法与廉法二百四十相加共
得二百四十五为廉隅共法书于馀积
之左以三商五乘之得一千二百二十
五与馀积相减恰尽是开得一百二十
五为共瓜之数亦即每瓜之价也此法
因每瓜应给脚钱一文今以一瓜准之
御制数理精蕴 下编卷十一 第 29b 页 WYG0799-0740b.png WYG0799-0740c.png


御制数理精蕴 下编卷十一 第 30a 页 WYG0799-0741a.png

御制数理精蕴 下编卷十一 第 31a 页 WYG0799-0741c.png

带纵平方者两等边直角长方面积也有积数因长
比阔之较或长与阔之和而得边故曰带纵盖正方
之纵横皆同故止有积即可得其边若长方则纵横
不等知其积又必知其纵横相差之较或纵横相并
之和始能得其边故以长阔之较为问者则皆较为
带纵加所开之数商除之而得阔或四因积数加较
自乘平方开之即长阔之和和加较半之而得长和
御制数理精蕴 下编卷十一 第 31b 页 WYG0799-0741d.png WYG0799-0742a.png


得半和加半较而得长减半较而得阔如以长阔之
和为问者则用和为带纵减去所开之数商除之而
得阔或四因积数减和自乘平方开之即长阔之较
较减和半之而得阔较加和半之而得长或半和自
乘减原积而开平方即得半较加半和而得长减半
和而得阔夫用半较半和之法与四因积数之法同
出一理盖四因积数加全较自乘故开方而得全和
半较自乘加原积故开方而得半和四因积数减全
御制数理精蕴 下编卷十一 第 31b 页 WYG0799-0741d.png WYG0799-0742a.png


御制数理精蕴 下编卷十一 第 32a 页 WYG0799-0742c.png

倍边得其半而积为四分之一也法虽不一要之皆
使归于正方以求其和较是则虽曰带纵仍不外乎
平方之理也
设如有长方面积八尺纵多二尺问长阔各几何
法列积如开平方法商之积八尺止可
商二尺乃以二尺书于原积八尺之上
而以所商二尺加纵多二尺得四尺以
御制数理精蕴 下编卷十一 第 32b 页 WYG0799-0742d.png WYG0799-0743a.png


相减恰尽即知长方之阔得二尺加入
纵多二尺得四尺即为长方之长也如
图甲乙丙丁长方形容积八尺其甲乙
边长四尺甲丁边阔二尺其甲乙长比
甲丁阔所多戊乙即纵多之数初商所
得二尺即甲戊己丁正方之每一边盖
因此法长阔两边俱止一位而积亦止
一位故初商所得即为一边而加入纵
御制数理精蕴 下编卷十一 第 32b 页 WYG0799-0742d.png WYG0799-0743a.png


御制数理精蕴 下编卷十一 第 33a 页 WYG0799-0743c.png

又法以积八尺用四因之得三十二尺
而以纵多二尺自乘得四尺加八四因
之数得三十六尺开方得六尺即为长
阔相和之数乃以纵多二尺与长阔之
和六尺相加得八尺折半得四尺即长
方之长减纵多二尺得二尺即长方之
阔也如图甲乙丙丁长方形容积八尺
御制数理精蕴 下编卷十一 第 33b 页 WYG0799-0743d.png WYG0799-0744a.png


己子丁丑壬四长方形回环相凑成一
空心正方式再加入纵多二尺自乘之
丑丙庚癸之一小正方形即成甲戊辛
子之一大正方形其甲戊类每一边即
长阔之和故开方得长阔之和既得和
加纵多是为倍长故折半而得长减纵
多则为倍阔故折半而得阔或得长而
减纵多亦得阔也
御制数理精蕴 下编卷十一 第 33b 页 WYG0799-0743d.png WYG0799-0744a.png


御制数理精蕴 下编卷十一 第 34a 页 WYG0799-0744c.png

九尺平方开之得三尺为半和于半和
减半较得二尺为阔于半和加半较得
四尺为长如图甲乙丙丁长方形甲乙
为长甲丁为阔戊乙为纵多之较将较
折半于庚而移庚乙丙辛置于丁己癸
壬再加己辛子癸半较自乘之方则成
甲庚子壬一正方形故开方而得甲庚
御制数理精蕴 下编卷十一 第 34b 页 WYG0799-0744d.png WYG0799-0745a.png


减丁壬之半较得甲丁之阔于甲庚之
半和加庚乙之半较得甲乙之长也又
图甲乙丙丁长方形容积八尺将甲丁
边引长作丁辛与丁丙等则甲辛为长
阔之和又如甲乙边截甲丁于庚则庚
丁为长阔之较甲辛和折半于己而庚
丁较亦折半于己故以己为心甲为界
作一半圜而引丙丁边至戊界作一戊
御制数理精蕴 下编卷十一 第 34b 页 WYG0799-0744d.png WYG0799-0745a.png


御制数理精蕴 下编卷十一 第 35a 页 WYG0799-0745c.png

戊丁丁辛又为连比例之三线矣其戊
丁中率自乘之方与甲丁首率丁辛末
率相乘之长方等(见几何原本/九卷第三节)则是戊
丁自乘之方与原设甲乙丙丁长方之
积等也又戊丁巳为勾股形其戊丁边
自乘之方与己丁边自乘之方相并而
与戊巳自乘之方等(见几何原本/九卷第四节)故与
御制数理精蕴 下编卷十一 第 35b 页 WYG0799-0745d.png WYG0799-0746a.png


之方加以己丁半较自乘之数开方而
得戊巳为半和于戊巳相等之己辛半
和减己丁半较而得丁辛与丁丙等之
阔又与戊巳相等之甲巳半和加己丁
半较而得甲丁之长也
设如有长方面积一千二百五十四尺纵多五尺问
长阔各几何
法列积如开平方法商之其一千二百
御制数理精蕴 下编卷十一 第 35b 页 WYG0799-0745d.png WYG0799-0746a.png


御制数理精蕴 下编卷十一 第 36a 页 WYG0799-0746c.png

加纵多五尺得三十五尺以初商三十
尺乘之得一千零五十尺书于原积之
下相减馀二百零四尺为次商廉隅之
共积乃以初商三十尺倍之得六十尺
加纵多五尺得六十五尺为廉法以除
二百零四尺足三尺则以三尺书于原
积四尺之上而以廉法六十五尺加隅
御制数理精蕴 下编卷十一 第 36b 页 WYG0799-0746d.png WYG0799-0747a.png


商三尺乘之得二百零四尺书于馀积
之下与馀积相减恰尽即知长方之阔
得三十三尺加纵多五尺得三十八尺
即为长方之长也如图甲乙丙丁长方
形容积一千二百五十四尺其甲乙边
长三十八尺甲丁边阔三十三尺其甲
乙长比甲丁阔所多之甲辛即纵多之
数其甲戊己庚长方形容积一千零五
御制数理精蕴 下编卷十一 第 36b 页 WYG0799-0746d.png WYG0799-0747a.png


御制数理精蕴 下编卷十一 第 37a 页 WYG0799-0747c.png

即初商加纵多之数其戊乙丑己壬己
子癸两长方为两方廉庚壬癸丁小长
方为纵廉方廉有二纵廉止一故倍初
商加纵多数为廉法其己丑丙子为隅
其长阔皆与次商等故以次商为隅法
合两方廉一纵廉一小隅成一磬折形
环附初商长方之两傍成一大长方与
御制数理精蕴 下编卷十一 第 37b 页 WYG0799-0747d.png WYG0799-0748a.png


又为两方廉一纵廉一小隅复成一磬
折形得三商四商以至多商皆依此法
递析开之
又法以积一千二百五十四尺用四因
之得五千零一十六尺而以纵多五尺
自乘得二十五尺加入四因之数得五
千零四十一尺开方得七十一尺即为
长阔相和之数乃以纵多五尺与长阔
御制数理精蕴 下编卷十一 第 37b 页 WYG0799-0747d.png WYG0799-0748a.png


御制数理精蕴 下编卷十一 第 38a 页 WYG0799-0748c.png

即长方之阔也
又法先将纵多五尺折半得二尺五寸
为半较自乘得六尺二十五寸与原积
一千二百五十四尺相加得一千二百
六十尺二十五寸开方得三十五尺五
寸为半和于半和减半较得三十三尺
为阔于半和加半较得三十八尺为长
御制数理精蕴 下编卷十一 第 38b 页 WYG0799-0748d.png WYG0799-0749a.png


设如有长方面积一十八万一千四百六十丈纵多
八丈问长阔各几何
法列积如开平方法商之其一十八万
丈为初商积可商四百丈乃以四百丈
书于原积八万丈之上而以初商四百
丈加纵多八丈得四百零八丈以初商
四百丈乘之得一十六万三千二百丈
书于原积之下相减馀一万八千二百
御制数理精蕴 下编卷十一 第 38b 页 WYG0799-0748d.png WYG0799-0749a.png


御制数理精蕴 下编卷十一 第 39a 页 WYG0799-0749c.png

八百零八丈为廉法以除一万八千二
百六十丈足二十丈则以二十丈书于
原积四百丈之上而以廉法八百零八
丈加隅法二十丈得八百二十八丈为
廉隅共法以次商二十丈乘之得一万
六千五百六十丈书于馀积之下与馀
积相减馀一千七百丈为三商廉隅之
御制数理精蕴 下编卷十一 第 39b 页 WYG0799-0749d.png WYG0799-0750a.png


倍之得八百四十丈加纵多八丈得八
百四十八丈为廉法以除一千七百丈
足二丈则以二丈书于原积空丈之上
而以廉法八百四十八丈加隅法二丈
得八百五十丈为廉隅共法以三商二
丈乘之得一千七百丈书于馀积之下
与馀积相减恰尽即知长方之阔得四
百二十二丈加纵多八丈得四百三十
御制数理精蕴 下编卷十一 第 39b 页 WYG0799-0749d.png WYG0799-0750a.png


御制数理精蕴 下编卷十一 第 40a 页 WYG0799-0750c.png

自乘得十六丈与原积一十八万一千
四百六十丈相加得一十八万一千四
百七十六丈开方得四百二十六丈为
半和于半和减半较得四百二十二丈
为阔于半和加半较得四百三十丈为
长也
设如有长方面积四万五千二百九十六尺纵多一
御制数理精蕴 下编卷十一 第 40b 页 WYG0799-0750d.png WYG0799-0751a.png


法列积如开平方法商之其四万尺为
初商积可商二百尺加纵多一百四十
六尺得三百四十六尺以所商二百尺
乘之得六万九千二百尺大于原积是
初商不可商二百尺也乃改商一百尺
书于原积四万尺之上而以所商一百
尺加纵多一百四十六尺得二百四十
六尺以初商一百尺乘之得二万四千
御制数理精蕴 下编卷十一 第 40b 页 WYG0799-0750d.png WYG0799-0751a.png


御制数理精蕴 下编卷十一 第 41a 页 WYG0799-0751c.png

以初商一百尺倍之得二百尺加纵多
一百四十六尺得三百四十六尺为廉
法以除二万零六百九十六尺足五十
尺则以五十尺书于原积二百尺之上
而以廉法三百四十六尺加隅法五十
尺得三百九十六尺为廉隅共法以次
商五十尺乘之得一万九千八百尺书
御制数理精蕴 下编卷十一 第 41b 页 WYG0799-0751d.png WYG0799-0752a.png


六尺为三商廉隅之共积乃以初商次
商之一百五十尺倍之得三百尺加纵
多一百四十六尺得四百四十六尺为
廉法以除八百九十六尺足二尺则以
二尺书于原积六尺之上而以廉法四
百四十六尺加隅法二尺得四百四十
八尺为廉隅共法以三商二尺乘之得
八百九十六尺书于馀积之下与馀积
御制数理精蕴 下编卷十一 第 41b 页 WYG0799-0751d.png WYG0799-0752a.png


御制数理精蕴 下编卷十一 第 42a 页 WYG0799-0752c.png

十八尺即为长方之长也此法原积初
商应得二百尺因加纵多相乘得数大
于原积故改商一百尺始合凡开带纵
方遇此类者皆依此例推之
又法加纵多一百四十六尺折半得七
十三尺为半较自乘得五千三百二十
九尺与原积四万五千二百九十六尺
御制数理精蕴 下编卷十一 第 42b 页 WYG0799-0752d.png WYG0799-0753a.png


二百二十五尺为半和于半和减半较
得一百五十二尺为阔于半和加半较
得二百九十八尺为长也
设如有长方面积一万六千一百二十八尺纵多七
十二尺问长阔各几何
法列积如开平方法商之其一万为初
商积可商一百尺加纵多七十二尺得
一百七十二尺以初商一百尺乘之得
御制数理精蕴 下编卷十一 第 42b 页 WYG0799-0752d.png WYG0799-0753a.png


御制数理精蕴 下编卷十一 第 43a 页 WYG0799-0753c.png

积一百尺之上而以所商九十尺加纵
多七十二尺得一百六十二尺以所商
九十尺乘之得一万四千五百八十尺
书于原积之下相减馀一千五百四十
八尺为次商廉隅之共积乃以初商九
十尺倍之得一百八十尺加纵多七十
二尺得二百五十二尺为廉法以除一
御制数理精蕴 下编卷十一 第 43b 页 WYG0799-0753d.png WYG0799-0754a.png


于原积八尺之上而以廉法二百五十
二尺加隅法六尺得二百五十八尺为
廉隅共法以次商六尺乘之得一千五
百四十八尺书于馀积之下与馀积相
减恰尽即知长方之阔为九十六尺加
纵多七十二尺得一百六十八尺即长
方之长也此法原积初商应得一百尺
因加纵多相乘得数大于原积故改商
御制数理精蕴 下编卷十一 第 43b 页 WYG0799-0753d.png WYG0799-0754a.png


御制数理精蕴 下编卷十一 第 44a 页 WYG0799-0754c.png

初商所得之数则用四因积数之法或
用纵多折半之法设例在后
设如有长方面积三万四千五百六十九尺纵多三
千八百三十二尺问长阔各几何
法列积如开平方法商之其三万尺为
初商积应商一百尺而纵多数为三千
转大如初商数凡遇此类则用四因积
御制数理精蕴 下编卷十一 第 44b 页 WYG0799-0754d.png WYG0799-0755a.png


加于原积开方之法为明白简易也故
以纵多三千八百三十二尺折半得一
千九百一十六尺为半较自乘得三百
六十七万一千零五十六尺与原积三
万四千五百六十九尺相加得三百七
十万五千六百二十五尺开方得一千
九百二十五尺为半和于半和减半较
得九尺为阔于半和加半较得三千八
御制数理精蕴 下编卷十一 第 44b 页 WYG0799-0754d.png WYG0799-0755a.png


御制数理精蕴 下编卷十一 第 45a 页 WYG0799-0755c.png

比阔多八块问长阔两面各用砖几何
法以长比阔多八块折半得四块为半
较自乘得十六块与积数一千九百二
十块相加得一千九百三十六块开方
得四十四块为半和于半和四十四块
减半较得四十块为阔面砖数于半和
加半较得四十八块为长面砖数也
御制数理精蕴 下编卷十一 第 45b 页 WYG0799-0755d.png WYG0799-0756a.png


数为五分之二问人数及每人所得银数各几何
法先用比例分其总银数以五分为一
率二分为二率三百六十两为三率得
四率一百四十四两开方得十二为人
数以人数除共银数三百六十两得三
十两为每人所得之银数也此法以人
数为阔其每人所得银数为长成一长
方形人数既居银数之五分之二是阔
御制数理精蕴 下编卷十一 第 45b 页 WYG0799-0755d.png WYG0799-0756a.png


御制数理精蕴 下编卷十一 第 46a 页 WYG0799-0756c.png

相等而成正方形矣故开方而得人数
也
设如有长方面积八尺长阔相和六尺问长阔各几
何
法列积如开平方法商之积八尺止可
商二尺乃以二尺书于原积八尺之上
而以所商二尺与和数六尺相减馀四
御制数理精蕴 下编卷十一 第 46b 页 WYG0799-0756d.png WYG0799-0757a.png


之下相减恰尽即知长方之阔得二尺
与和六尺相减得四尺即为长方之长
也如图甲乙丙丁长方形容积八尺其
甲乙边长四尺甲丁边阔二尺其甲丁
与甲乙相并得六尺即长阔之和初商
所得二尺即甲戊己丁正方之每一边
盖两边俱止一位故以初商所得为一
边于长阔和内减去初商所馀即又一
御制数理精蕴 下编卷十一 第 46b 页 WYG0799-0756d.png WYG0799-0757a.png


御制数理精蕴 下编卷十一 第 47a 页 WYG0799-0757c.png

数为问者以所商之数与较数相加此
以和数为问者则以所商之数与和数
相减也
又法以积八尺用四因之得三十二尺
而以和数六尺自乘得三十六尺减去
四因之数馀四尺开方得二尺即为长
阔相较之数乃以较数二尺与和数六
御制数理精蕴 下编卷十一 第 47b 页 WYG0799-0757d.png WYG0799-0758a.png


长减较二尺得二尺即长方之阔也如
图甲乙丙丁长方形容积八尺四因之
得甲乙丙丁戊己庚乙辛壬癸己子丁
丑壬四长方形回环相凑成一空心正
方式较之和数六尺自乘之甲戊辛子
正方形所少者止正中之一小正方形
故相减即馀丑丙庚癸之一小正方形
其丑丙类每一边即长阔之较故开方
御制数理精蕴 下编卷十一 第 47b 页 WYG0799-0757d.png WYG0799-0758a.png


御制数理精蕴 下编卷十一 第 48a 页 WYG0799-0758c.png

法比较数为问者亦在加减之异其以
较为问者用较自乘与四因数相加开
方而得和此以和为问者用和自乘与
四因数相减开方而得较也
又法先将和数六尺折半得三尺为半
和自乘得九尺与原积八尺相减得一
尺平方开之仍得一尺为半较于半和
御制数理精蕴 下编卷十一 第 48b 页 WYG0799-0758d.png WYG0799-0759a.png


四尺为长如图甲乙丙丁长方形甲乙
为阔甲丁为长甲壬为长阔和(丁壬与/丁丙阔)
(等/)折半为甲庚半和将甲乙丙丁长方
内之庚辛丙丁移于乙丑癸己则成甲
丑癸己辛庚一磬折形与甲庚半和自
乘之甲丑子庚正方形相减馀己癸子
辛一小正方形即半较自乘之方故开
方而得半较也故甲丑之半和减乙丑
御制数理精蕴 下编卷十一 第 48b 页 WYG0799-0758d.png WYG0799-0759a.png


御制数理精蕴 下编卷十一 第 49a 页 WYG0799-0759c.png

丙丁长方形容积八尺甲壬为长阔之
和甲庚己庚庚壬皆半和甲丁长减等
甲乙阔之甲戊馀戊丁为长阔之较其
庚丁则为半较而甲丁己丁丁壬又为
连比例之三线故己丁中率自乘之方
与甲丁首率丁壬末率相乘之长方等
(见几何原本/九卷第三节)则是己丁自乘之方与原
御制数理精蕴 下编卷十一 第 49b 页 WYG0799-0759d.png WYG0799-0760a.png


为勾股形其己丁边自乘之方与丁庚
边自乘之方相并而与己庚自乘之方
等(见几何原本/九卷第四节)故于己庚半和自乘方
内减去与原设甲乙丙丁长方积相等
之己丁自乘之数开方而得庚丁为半
较于己庚相等之庚壬半和内减庚丁
半较而得丁壬与丁丙等之阔又于己
庚相等之甲庚半和加庚丁半较而得
御制数理精蕴 下编卷十一 第 49b 页 WYG0799-0759d.png WYG0799-0760a.png


御制数理精蕴 下编卷十一 第 50a 页 WYG0799-0760c.png

问长阔各几何
法列积如开平方法商之其八百尺为
初商积可商二十尺乃以二十尺书于
原积八百尺之上而以初商二十尺与
和数六十尺相减得四十尺以初商二
十尺乘之得八百尺书于原积之下相
减馀六十四尺为次商廉隅之共积乃
御制数理精蕴 下编卷十一 第 50b 页 WYG0799-0760d.png WYG0799-0761a.png


六十尺相减馀二十尺为廉法以除六
十四尺足三尺因廉法内尚要减去商
数为法故取大数为四尺则以四尺书
于原积四尺之上而以廉法二十尺与
次商四尺相减得十六尺以次商四尺
乘之得六十四尺书于馀积之下与馀
积相减恰尽即知长方之阔得二十四
尺与和六十尺相减馀三十六尺即为
御制数理精蕴 下编卷十一 第 50b 页 WYG0799-0760d.png WYG0799-0761a.png


御制数理精蕴 下编卷十一 第 51a 页 WYG0799-0761c.png

尺甲丁边长三十六尺甲戊为长阔和
六十尺其丁戊与甲乙等甲子二十尺
为初商数与辛戊等甲辛四十尺则和
内减去初商之数两数相乘成甲子己
辛长方形即初商所减之积也丁戊既
与甲乙等辛戊又与甲子等则丁辛与
子乙等丁庚己辛小长方积与庚丑壬
御制数理精蕴 下编卷十一 第 51b 页 WYG0799-0761d.png WYG0799-0762a.png


子乙壬丑之积也次于甲戊和内减倍
初商数四十尺如寅戊馀甲寅二十尺
与子癸等为廉法子乙者为次商数也
子乙与丑癸等则于子癸廉法内减丑
癸馀子丑与次商子乙相乘得子乙壬
丑小长方即次商所减之积故减原积
恰尽也以初商甲子二十尺合次商子
乙四尺得甲乙二十四尺为阔于甲戊
御制数理精蕴 下编卷十一 第 51b 页 WYG0799-0761d.png WYG0799-0762a.png


御制数理精蕴 下编卷十一 第 52a 页 WYG0799-0762c.png

也三商以后皆仿此递析开之
又法以积八百六十四尺用四因之得
三千四百五十六尺而以和六十尺自
乘得三千六百尺减去四因之数馀一
百四十四尺开方得一十二尺即为长
阔之较乃以较十二尺与和六十尺相
加得七十二尺折半得三十六尺即长
御制数理精蕴 下编卷十一 第 52b 页 WYG0799-0762d.png WYG0799-0763a.png


方之阔也
又法先将和数六十尺折半得三十尺
为半和自乘得九百尺与原积八百六
十四尺相减得三十六尺开方得六尺
为半较于半和减半较得二十四尺为
阔于半和加半较得三十六尺为长也
设如有长方面积一万九千三百一十二尺长阔相
和二百七十八尺问长阔各几何
御制数理精蕴 下编卷十一 第 52b 页 WYG0799-0762d.png WYG0799-0763a.png


御制数理精蕴 下编卷十一 第 53a 页 WYG0799-0763c.png

原积一万尺之上而以初商一百尺与
和数二百七十八尺相减得一百七十
八尺以初商一百尺乘之得一万七千
八百尺书于原积之下相减馀一千五
百一十二尺为次商廉隅之共积乃以
初商一百尺倍之得二百尺与和数相
减得七十八尺为廉法以除一千五百
御制数理精蕴 下编卷十一 第 53b 页 WYG0799-0763d.png WYG0799-0764a.png


减去商数为法故取大数为三十尺则
以三十尺书于原积三百尺之上而以
廉法七十八尺与次商三十尺相减得
四十八尺以次商三十尺乘之得一千
四百四十尺书与馀积之下与馀积相
减馀七十二尺为三商廉隅之共积乃
以初商次商之一百三十尺倍之得二
百六十尺与和数二百七十八尺相减
御制数理精蕴 下编卷十一 第 53b 页 WYG0799-0763d.png WYG0799-0764a.png


御制数理精蕴 下编卷十一 第 54a 页 WYG0799-0764c.png

尺则以六尺书于原积二尺之上而以
廉法十八尺与三商六尺相减得十二
尺以三商六尺乘之得七十二尺书于
馀积之下与馀积相减恰尽即知长方
之阔得一百三十六尺与和二百七十
八尺相减馀一百四十二尺即为长方
之长也此法次商三商皆取大于足除
御制数理精蕴 下编卷十一 第 54b 页 WYG0799-0764d.png WYG0799-0765a.png


数减和自乘开方之法或半和自乘减
原积开方之法为整齐也法以一万九
千三百一十二尺用四因之得七万七
千二百四十八尺而以和二百七十八
尺自乘得七万七千二百八十四尺减
去四因之数馀三十六尺开方得六尺
即为长阔之较乃以较六尺与和二百
七十八尺相加得二百八十四尺折半
御制数理精蕴 下编卷十一 第 54b 页 WYG0799-0764d.png WYG0799-0765a.png


御制数理精蕴 下编卷十一 第 55a 页 WYG0799-0765c.png

设如有长方面积六万九千三百六十尺长阔相和
七百八十二尺问长阔各几何
法列积如开平方法商之其六万为初
商积可除二百尺而以二百尺与和数
七百八十二尺相减得五百八十二尺
以初商二百尺乘之得十一万六千四
百尺大于积数乃改商一百尺书于原
御制数理精蕴 下编卷十一 第 55b 页 WYG0799-0765d.png WYG0799-0766a.png


数七百八十二尺相减得六百八十二
尺以初商一百尺乘之得六万八千二
百尺书于原积之下相减馀一千一百
六十尺为次商廉隅之共积乃以初商
一百尺倍之得二百尺与和数七百八
十二尺相减得五百八十二尺为廉法
以除一千一百六十尺止足二尺爰书
空位于原积三百尺之上而以二尺书
御制数理精蕴 下编卷十一 第 55b 页 WYG0799-0765d.png WYG0799-0766a.png


御制数理精蕴 下编卷十一 第 56a 页 WYG0799-0766c.png

以三商二尺乘之得一千一百六十尺
书于原积之下与馀积相减恰尽即知
长方之阔得一百零二尺与和七百八
十二尺相减馀六百八十尺即为长方
之长也此法初商应商二百尺因减纵
相乘得数转大于原积故改商一百尺
凡遇此类不若用四因积数之法与半
御制数理精蕴 下编卷十一 第 56b 页 WYG0799-0766d.png WYG0799-0767a.png


二尺折半得三百九十一尺自乘得一
十五万二千八百八十一尺与原积六
万九千三百六十尺相减馀八万三千
五百二十一尺开方得二百八十九尺
为半较于半和减半较得一百零二尺
为阔于半和加半较得六百八十尺为
长也
设如有钱四千七百六十文买果树不知数但知树
御制数理精蕴 下编卷十一 第 56b 页 WYG0799-0766d.png WYG0799-0767a.png


御制数理精蕴 下编卷十一 第 57a 页 WYG0799-0767c.png

法以共数一百七十四折半得八十七
为半和自乘得七千五百六十九与共
钱四千七百六十文相减馀二千八百
零九开方得五十三为半较于半和减
半较馀三十四为树数于半和加半较
得一百四十为树价也此法以树数为
阔树价为长成一长方形其树数与树
御制数理精蕴 下编卷十一 第 57b 页 WYG0799-0767d.png WYG0799-0768a.png


减积开方得半较既得半较以减半和
为树数加半和为树价也
设如有法书一卷共一千一百五十九字其行数与
每行字数相加共八十问行数及字数各几何
法以和数八十折半得四十为半和自
乘得一千六百与共字一千一百五十
九相减馀四百四十一开方得二十一
为半较于半和加半较得六十一为行
御制数理精蕴 下编卷十一 第 57b 页 WYG0799-0767d.png WYG0799-0768a.png


御制数理精蕴 下编卷十一 第 58a 页 WYG0799-0768c.png

设如有五百八十八人用船均载其船数与每船所
载人数相加比船数多四分之三问船数与每船
所载人数各几何
法先用比例分其积以三分为一率一
分为二率五百八十八人为三率得四
率一百九十六人用开平方法开之得
十四为船数以三因之得四十二为每
御制数理精蕴 下编卷十一 第 58b 页 WYG0799-0768d.png WYG0799-0769a.png


所载人数为长成一长方形船数与人
数相加即如长阔之和和数既比船数
多四分之三则是和数为四分每船所
载人数为三分船数为一分即阔为一
分长为三分也故将共人数三分之而
取其一则人数与船数同为一分而成
正方形矣故平方开之即得船数每船
所载人数既为船数之三倍故三因之
御制数理精蕴 下编卷十一 第 58b 页 WYG0799-0768d.png WYG0799-0769a.png


御制数理精蕴 下编卷十一 第 59a 页 WYG0799-0769c.png

御制数理精蕴 下编卷十一 第 59b 页 WYG0799-0769d.png

御制数理精蕴下编卷十一